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ABSTRACT

An aerodynamic design optimization procedure that is
based on a evolutionary algorithm known at Differential Evo-

lution is described. Differential Evolution is a simple, fast, and

robust evolutionary strategy that has been proven effective in

determining the global optimum for several difficult optimiza-

tion problems, including highly nonlinear systems with dis-
continuities and multiple local optima. The method is
combined with a Navier-Stokes solver that evaluates the vari-

ous intermediate designs and provides inputs to the optimiza-

tion procedure. An efficient constraint handling mechanism is

also incorporated. Results are presented for the inverse design
of a turbine airfoil from a modern jet engine and compared to

earlier methods. The capability of the method to search large

design spaces and obtain the optimal airfoils in an automatic
fashion is demonstrated. Substantial reductions in the overall

computing time requirements are achieved by using the algo-

rithm in conjunction with neural networks.

INTRODUCTION

Remarkable progress has been made in recent years in the

ability to design turhomachinery airfoil shapes that are optimal

with regard to certain desired characteristics. This progress has

been achieved by combining improved methods for predicting

the complicated flow fields in turbomachinery with efficient

numerical optimization techniques and by harnessing the pow-

erful capabilities of modern computers. Both steady and

unsteady Navier-Stokes and Euler solvers have been combined

with various optimization techniques (gradient-based meth-

ods, 1'2 response surfaces, etc.) to optimize the design of turbo-

machinery airfoils.

More recently, there has been considerable interest in the

development of turbomachinery airfoil design optimization

techniques that are based on nontraditional approaches such as

evolutionary algorithms and neural networks. Various

approaches based on neural networks (see, for example Sanz, 3

Rai, 4 Pierret and BraembusscheS), neural networks in conjunc-

tion with response surfaces (Rai and Madavan, 6 Papila et at.7),

genetic algorithms (Obayashi and Takahashi, 8 Dennis et al.9),

genetic algorithms in conjunction with neural networks (Qua-

gliarella and Cioppa, l° Uelschen and Lawerenz, tt Poloni et

al. 12) have been reported in the literature. These techniques

offer several advantages over traditional optimization meth-
ods.

This paper deals with the development of an turbomachin-

ery airfoil design optimization procedure that is based on a rel-

atively new evolutionary algorithm known as Differential

Evolution 13 (DE) developed for single-objective optimization

in continuous search spaces. It is conceptually simple and pos-

sesses good convergence properties that have been demon-

strated in a variety of applications. DE is best characterized as

an evolutionary strategy (ES) rather than as a genetic algo-

rithm (GA), although the distinction between GAs and ESs

have blurred in recent years. Perhaps the main ideological dif-

ference lies in the relative importance given to the two main

evolutionary operators, recombination (crossover) and muta-

tion, with GA-based approaches relying heavily on the former

and ES-based approaches on the latter. DE has proven to be an

effective approach in determining the global optimum for sev-

eral difficult optimization problems in a variety of applica-

tions. Its application in aeronautics, however, has been rather

limited. Nho and Agarwa114 used it in predictive control of air-

craft dynamics. Rogalsky et at.t5 used DE in conjunction with

a potential flow solver in the inverse design of turbomachinery

airfoils; Rogalsky et al.t6 also presented a hybridized version

of DE by using it in conjunction with a local search method to

minimize the number of objective function evaluations using

the potential flow solver.

In this paper the DE algorithm is combined with a Navier-

Stokes solver that provides inputs to the optimization proce-

dure. An efficient constraint handling mechanism is also incor-

porated in the algorithm. An airfoil geometry parametrization
that uses a minimal number of variables is also used to mini-

mize the number of objective function evaluations. The proce-

dure is also combined with neural networks that are

incrementally trained on the Navier-Stokes simulation data

and can then be used in the objective function evaluation. This

results in substantial reductions in the overall computing time.

Additionally, the procedure has been implemented on a dis-

tributed parallel computer in a straightforward manner that

relies on the simultaneous computation of multiple, indepen-

dent aerodynamic simulations on separate processors. The

procedure is primarily script-based and allows for a variable

number of processors to be used depending on the size of the

population used in the DE algorithm. Details of the method

and its implementation are described in the final paper along

with results for the inverse design of a turbine airfoil to dem-

onstrate its capabilities.

DESIGN OPTIMIZATION METHOD

The DE approach uses a population of n-dimensional, real-

valued parameter vectors. The population is usually initialized
in a random fashion and the population size is maintained con-

stant throughout the optimization process. As with all ES-

based approaches, mutation is the key ingredient of DE. The

basic idea is to generate new parameter vectors for the subse-

quent generation by using weighted differences between two

(or more) parameter vectors selected randomly from the cur-

rent population to provide appropriately scaled perturbations



thatmodifyanotherparametervector(or,comparisonvector)
selectedfromthesamepopulation.

Geometryparameterizationandprudentselectionofdesign
variablesareamongthemostcriticalaspectsof anyshape
optimizationprocedure.Here,theairfoilgeometryparameter-
izationmethoddescribedinRaiandMadavan6thatusesatotal
of13parameterstodefinetheturbineairfoilgeometryisused.

Atwo-dimensionalNavier-Stokessolverisusedtoperform
theflowsimulations(directfunctionevaluations)thatserveas
inputstotheoptimizationprocess.Multiplegridsareusedto
discretizetheflowdomain.Theflowparametersthatarespeci-
fiedaretheturbinepressureratio,inlettemperatureandflow
angle,flowcoefficient,andunitReynoldsnumberbasedon
inletconditions.

RESULTS
Thedesignmethodwasusedintheinversedesignofatur-

bineairfoilwithaspecifiedpressuredistribution.Thetarget
pressuredistributionwasobtainedatthemidspanofaturbine
vanefromamodernjetengineandwassuppliedbyPrattand
Whitney(PrivateCommunication,F.Huber,1997).Several
flowandgeometryparameterswerealsosuppliedandusedin
thedesignprocess.Thedesignobjectivefunctionwasformu-
latedastheequally-weightedsum-of-squareserrorbetween
thetargetandactualpressureobtainedduringtheoptimization
processat45locationsontheairfoil.

Figure 1 shows the pressure distribution for the optimal air-

foil obtained using the DE optimization method. The results

compare well with the target distribution. The method allows

for the number of design variables to be gradually increased

during the design process. Figure 1 also shows the pressure
distribution from intermediate results obtained using six

design variables.
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Figure 1. Airfoil surface pressure distributions obtained from

CFD simulations for the final optimal design and an

intermediate design (using 6 design variables).


